If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(2x^2+40x-525)=0
We multiply parentheses
4x^2+80x-1050=0
a = 4; b = 80; c = -1050;
Δ = b2-4ac
Δ = 802-4·4·(-1050)
Δ = 23200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23200}=\sqrt{400*58}=\sqrt{400}*\sqrt{58}=20\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-20\sqrt{58}}{2*4}=\frac{-80-20\sqrt{58}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+20\sqrt{58}}{2*4}=\frac{-80+20\sqrt{58}}{8} $
| 4z-6=110 | | 1+9x=-23=x | | 33.6+y=180 | | 5=m+2/2 | | 6c-36=48 | | z+36/z+3=9 | | 5,1x=153 | | 8+1/3x=17 | | 51+36=p | | 10x+41=(5x-7)+(2x-2) | | 112u-9+7u=26 | | 180-99=m | | 4x-3=2(2x+5) | | x+10+x-2+2x=180 | | 6x+9=8x-10 | | 6=y96 | | 3x+45=11x-75 | | 11x-59=61+3x | | 10+7x+1x=10 | | X+2x+3x=56 | | -5(6m+3)+7=82 | | 0.5x-4=14 | | -10x-156=66-4x | | 6=-4(1-n)+3(n+1) | | 20j(j+2=0 | | 5z-3=97 | | 5y-5/10=1 | | 6x+8=88 | | 4*5(j+40)+2=0 | | -2x^2-12x+14=0 | | 8x-18=x+17 | | 3x-131=37-5x |